Industrial Wastewater Treatment By Activated Sludge

Microbial Ecology of Wastewater Treatment Plants presents different methods and techniques used in microbial ecology to study the interactions and evolution of microbial populations in WWTPs, particularly the new molecular tools developed in the last decades. These molecular biology-based methods (e.g. studies of DNA, RNA and proteins) provide a high resolution of information compared to traditional ways of studying microbial wastewater populations, such as microscopic examination and culture-based methods. In addition, this book addresses the ability of microorganisms to degrade environmental pollutants. Describes application of different Omics tools in Wastewater treatment plants (WWTPs) Demonstrates the role of microorganisms in WWTPs Includes discussions on the microbial ecology of WWTPs Covers the microbial diversity of activated sludge Emphasizes cutting-edge molecular tools

New Trends in Removal of Heavy Metals from Industrial Wastewater covers the applicable technologies relating to the removal of heavy metals from wastewater and new and emerging trends in the field, both at the laboratory and industrial scale. Sections explore new environmentally friendly technologies, the principles of sustainable development, the main factors contributing to heavy metal removal from wastewater, methods and procedures, materials (especially low-cost materials originated from industrial and agricultural waste), management of wastewater containing heavy metals and wastewater valorization, recycling, environmental impact, and wastewater policies for post heavy metal removal. This book is an advanced and updated vision of existing heavy metal removal technologies with their limitations and challenges and their potential application to remove heavy metals/environmental pollutants through advancements in bioremediation. Finally, sections also cover new trends and advances in environmental bioremediation with recent developments in this field by an application of chemical/biochemical and environmental biotechnology. Outlines the fate and occurrence of heavy metals in Wastewater Treatment Plants (WWTPs) and potential approaches for their removal Describes the techniques currently available for removing heavy metals from wastewater Discusses the emerging technologies in heavy metal removal Covers biological treatments to remove heavy metals Includes the valorization of heavy metal containing wastewater

The Future of Effluent Treatment Plants: Biological Treatment Systems is an advanced and updated version of existing biological technologies that includes their limitations, challenges, and potential application to remove chemical oxygen demand (COD), refractory chemical oxygen demand, biochemical oxygen demand (BOD), color removal and environmental pollutants through advancements in microbial bioremediation. The book introduces new trends and advances in environmental bioremediation with thorough discussions of recent developments. In addition, it illustrates that the application of these new emerging innovative technologies can lead to energy savings and resource recovery. The importance of respiration, nitrogen mineralization, nitrification, denitrification and biological phosphorus removal processes in the development of a fruitful and applicable solution for the removal of toxic pollutants from wastewater treatment plants is highlighted. Equally important is the knowledge and
theoretical modeling of water movement through wastewater ecosystems. Finally, emphasis is given to the function of constructed wetlands and activated sludge processes. Considers different types of industrial wastewater Focuses on biological wastewater treatments Introduces new trends in bioremediation Addresses the future of WWTPs

The main subject of the Workshop was the new developments about the cost effective treatment techniques for better removal efficiencies and discussion of policies for pollution control. Although effluent water quality requirements differ from one country to another, their application will be an efficient mean for water pollution control. Specific promotion should be provided for polluters to meet the effluent water quality requirements. Results of pilot scale studies demonstrate the applicability of and advantages of sequencing batch reactor technology for pretreatment of industrial wastewaters Fixed film biological reactors offer the possibility to enrich slow growing specialized microorganisms by developing biofilms on support materials. Physical chemical processes are used for the treatment of unusual and difficult industrial wastewaters and membrane technologies for the concentration and recovery of raw materials and by-products, in industries where the conventional treatment technologies are inappropriate or uneconomic~ Physical chemical processes give higher efficiencies when polymers are applied but the composition of these long chain chemicals is an important consideration; Most developing countries suffer from severe environmental problems and shortage of energy and resources. These countries urgently need simple, inexpensive and integrated environmental protection system, which combine wastewater treatment with recovery and reuse. Anaerobic treatment offer many advantages in this respect. Because recovery of substances from wastes serves twofold purpose of recycle and pollution control, it must be applied where possible.

Removal of Emerging Contaminants from Wastewater through Bio-nanotechnology showcases profiles of the nonregulated contaminants termed as “emerging contaminants, which comprise industrial and household persistent toxic chemicals, pharmaceuticals and personal care products (PPCPs), pesticides, surfactants and surfactant residues, plasticizers and industrial additives, manufactured nanomaterials and nanoparticles, microplastics, etc. that are used extensively in everyday life. The occurrence of “emerging contaminants in wastewater, and their behavior during wastewater treatment and production of drinking water are key issues in the reuse and recycling of water resources. This book focuses on the exploitation of Nano-biotechnology inclusive of the state-of-the-art remediate strategies to degrade/detoxify/stabilize toxic and hazardous contaminants and restore contaminated sites, which is not as comprehensively discussed in the existing titles on similar topics available in the global market. In addition, it discusses the potential environmental and health hazards and ecotoxicity associated with the widespread distribution of emerging contaminants in the water bodies. It also considers the life cycle assessment (LCA) of emerging (micro)-pollutants with suitable case studies from various industrial sources. Provides natural and ecofriendly solutions to deal with the problem of pollution Details underlying mechanisms of nanotechnology-associated microbes for the removal of emerging contaminants Describes numerous successful field studies on the application of bio-nanotechnology for eco-restoration of contaminated sites Presents recent advances and challenges in bio-nanotechnology research and applications for
sustainable development Provides authoritative contributions on the diverse aspects of bio-nanotechnology by world's leading experts
Mechanism and Design of Sequencing Batch Reactors
Treating potable and polluted water for the world's population is still one of our most important challenges. The United Nations estimate that more than 1.2 billion people suffer from inadequate water supply and an even larger number, up to 4 billion people, are without hygienic disposal of waste and wastewater. Water technology and the necessary "know-how transfer", has been the key objective of the Gothenburg symposia from the very beginning. The contents of this book respond to these challenges and demonstrate the impressive development of the field of chemical water and wastewater treatment. The Chemical Water and Wastewater Treatment Series provides authoritative coverage of the key current developments in the chemical treatment of water and wastewater in theory or practice and related problems such as sludge production and properties, and the reuse of chemicals and chemically-treated waters and sludges. For the tenth in the series, the contributions document the development if the field of chemical water and wastewater technology, both in terms of new technological developments as well as public and administrative acceptance and approval of the solutions offered. Such new developments include the use of membrane technology, the application of computational tools for kinetic process modelling and optimisation as well as the use of advanced oxidation processes in actual water treatment. Chemical Water and Wastewater Treatment VII covers fundamental science, new technological developments and practical experience and is an invaluable reference source for engineers scientists and administrators, active in the treatment of drinking water, municipal and industrial wastewater and sludges.

All industries produce waste products that unless treated or mitigated in some way will be harmful to the human or natural environment. These waste products will generally need to be identified according to the industrial process in question, neutralized or rendered less harmful and finally disposed of into the surrounding land, air or watercourses. It is therefore of vital importance to every environmental, pollution or plant manager or engineer that these processes be fully understood and implemented or the cost to either the company or the environment can be catastrophic. With increasing government regulation of pollution, as well as willingness to levy punitive fines for transgressions, and the ever-present financial imperative to carry out these activities in the most efficient and cost-effective manner it is the responsibility of the professionals in question to ensure that they have the most up-to-date information available at their disposal. This book provides not only that, but the only available methodology for identifying which waste types are produced from which industrial processes, and how they can be treated. This unique feature makes this book one that every environmental, industrial and plant manager, engineer and consultant will want to have on their bookshelf. Essential aspect of, and requirement for, all manufacturing industry The only up-to-date book on this subject area available Takes a practical applications standpoint, not a theoretical approach

This monograph provides comprehensive coverage of technologies which integrate adsorption and biological processes in water and wastewater treatment. The authors provide both an introduction to the topic as well as a detailed discussion of theoretical and practical considerations. After a review of the basics involved in the chemistry, biology and technology of integrated adsorption and biological removal, they discuss the setup of pilot- and full-scale treatment facilities, covering powdered as well as granular activated carbon. They elucidate the factors that influence the successful operation of integrated systems. Their discussion on integrated systems expands from the effects of environmental to the removal of various pollutants, to regeneration of activated carbon, and to the analysis of such systems in mathematical terms. The authors conclude with a look at future needs for research and
development. A truly valuable resource for environmental engineers, environmental and water chemists, as well as professionals working in water and wastewater treatment. Wastewater Treatment and Technology examines the processes available for the various stages of treatment of wastewater, beginning with the preliminary processes of screening, grit removal and storm water separation and ending with tertiary treatment and sludge disposal. There is considerable emphasis on the biological processes that are used for the oxidation of BOD and the removal of nitrogen and phosphorous. Options for the treatment of industrial wastewater, including anaerobic digestion, physico-chemical processes and enhanced oxidation are also discussed. Wastewater Treatment and Technology concludes by examining what the future may bring and how this may affect the technology of wastewater treatment. Wastewater treatment and technology will be invaluable for the engineer or technologist who is beginning a career in wastewater treatments as well as for established engineers who want to refresh their memories. This book provides useful information about bioremediation, phytoremediation, and mycoremediation of wastewater and some aspects of the chemical wastewater treatment processes, including ion exchange, neutralization, adsorption, and disinfection. Additionally, this book elucidates and illustrates the wastewater treatment plants in terms of plant sizing, plant layout, plant design, and plant location. Cutting-edge topics include wet air oxidation of aqueous wastes, biodegradation of nitroaromatic compounds, biological treatment of sanitary landfill leachate, bacterial strains for the bioremediation of olive mill wastewater, gelation of arabinoxylans from maize wastewater, and modeling wastewater evolution. Biological Wastewater Treatment: Principles, Model Managing wastewater is a necessary task for small businesses and production facilities, as well as for large industrial firms. Industrial Wastewater Treatment: A Guidebook presents an approach to successful selection, development, implementation, and operation of industrial wastewater treatment systems for facilities of all sizes. It explains how to determine various properties about wastewater, including how it is generated, what its constituents are, whether it meets regulatory requirements, and whether or not it can be recycled. It describes methodologies for developing and maintaining a suitable treatment program, determined by the type of company under consideration. Examples of treatment systems which have been installed in various types of businesses over the past several years are presented in a manner that clearly illustrates successful treatment methods. Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific
reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. Provides practical solutions for the treatment and recycling of industrial wastewater via case studies Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison Supplies you with the relevant information to make quick process decisions Technical information for using activated sludge to treat effluents from multiple industries Covers virtually all traditional and advanced methods, as well as treatability and process modeling New methods for removing U.S. and European regulated microconstituents, trace organics, active pharmaceutical ingredients and other contaminants Explains advances in water reuse and plant retrofitting Useful for in-house training This comprehensive book presents critical information on the applications of activated sludge for treating industrial wastewaters, as well as other effluents that impact POTWs. The book offers details on how advances in activated sludge can be deployed to meet more stringent discharge limits by explaining many novel variations of activated sludge and offering technical guidance on process modeling and optimization. Special attention is given to emerging contaminants and water reuse strategies. Case studies are drawn from the pharma, food and shale gas industries. Based on short courses taught by the authors, as well as hundreds of hours of in-plant consulting, this book offers the tools to understand and modify the activated sludge process for superior and sustainable wastewater treatment. From the Authors' Preface: "After speaking with practitioners, operators and engineers, the authors felt a new text was needed...to cover the following developments: "the continued evolution of the activated sludge process and its numerous designs, configurations and technology developments; "design of industrial water reuse systems...to achieve industry sustainability goals; "changes...from BOD, TSS and nutrient removal to removal of specific organics, toxicity...microconstituents, and more stringent effluent permit limits; "advances in process modeling tools that can be used in combination with treatability testing tools for plant design, optimization and troubleshooting; "concerns over industrial wastewater discharge impacts to POTWs, such as nitrification inhibition, the impact of frac water...and the fate of microconstituents through POTWs." All industrial production processes generate waste waters, which can pollute water bodies into which they are discharged without adequate treatment. It is, therefore, essential to treat such wastes and eliminate their harmful effects on the environment. This book discusses sources, characteristics and treatment of waste waters produced in industries such as textiles, dairy, tanneries, pulp and paper, fertilizer, pesticide, organic and inorganic chemicals, engineering and fermentation. Many flow diagrams have been included to illustrate industrial processes and to indicate the sources of waste water in such processes. After
describing treatment for individual factories, the author discusses the more advanced and economical common effluent plants. The text uses simple and straightforward language and makes the presentation attractive. This book should prove extremely useful to undergraduate students of civil and chemical engineering and postgraduate students of environmental science and engineering. Industrial design consultants will also find the book very handy. To the Greens, it may offer some of the solutions to their concerns.

Water and Wastewater Treatment Technologies theme is a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Water and Wastewater Treatment Technologies deals, in three volumes, and covers several topics, with several issues of great relevance to our world such as: Urban Wastewater Treatment; Characteristics of Effluent Organic Matter in Wastewater; Filtration Technologies in wastewater treatment; Air Stripping in Industrial Wastewater Treatment; Dissolved air flotation in industrial wastewater treatment; Membrane Technology for Organic Removal in Wastewater; Adsorption and Biological Filtration in Wastewater Treatment; Physico-chemical processes for Organic removal from wastewater effluent; Deep Bed Filtration: Modelling Theory And Practice; Specific options in biological wastewater treatment for reclamation and reuse; Biological Phosphorus Removal Processes For Wastewater Treatment; Sequencing Batch Reactors: Principles, Design/Operation And Case Studies; Wastewater stabilization ponds (WSP)for wastewater treatment; Treatment of industrial wastewater by membrane bioreactors; Stormwater treatment technologies; Sludge Treatment Technologies; Wastewater Treatment Technology For Tanning Industry; Palm Oil And Palm Waste Potential In Indonesia; Recirculating Aquaculture Systems – A Review; Upflow anaerobic sludge blanket (UASB)reactor in wastewater treatment; Applied Technologies In Municipal Solid Waste Landfill Leachate Treatment; Water Mining: Planning and Implementation Issues for a successful project; Assessment methodologies for water reuse scheme and technology; Nanotechnology for Wastewater Treatment. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, Managers, and Decision makers and NGOs. 

This book examines the practices used or considered for biological treatment of water/waste-water and hazardous wastes. The technologies described involve conventional treatment processes, their variations, as well as future technologies found in current research. The book is intended for those seeking an overview to the biotechnological aspects of pollution engineering, and covers the major topics in this field. The book is divided into five major sections and references are provided for those who wish to dig deeper. This book adopts a “show and tell” approach to guiding readers in the area of industrial wastewater treatment and the facilities associated with such treatment. It assumes the reader
is familiar with wastewater treatment theory but may be unfamiliar with the reasons why certain unit processes or equipment are included in practice, how these work, and why they fail therein. Industrial wastewaters are extremely varied and this complicates their treatment and discussion. Numerous tables showing industrial wastewater characteristics and photographs of facilities are provided so that the reader can better appreciate industrial wastewater treatment and its “culture” in Asia, and gain a degree of familiarity with the subject unachievable if only text descriptions were used. The book aims to provide a link between theory and practice. It does not only cover typical textbook material but also includes much information that would usually be accessible only to persons who have handled wastewaters and treatment facilities personally. The numerous examples provided have been drawn from the author's own field experience over two decades in Asia. Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations for the topics that are analysed in more detail in the other books of the series. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilisation Ponds; Volume 4: Anaerobic Reactors; Volume 5: Activated Sludge and Aerobic Biofilm Reactors; Volume 6: Sludge Treatment and Disposal Industrial Wastewater Treatment by Activated SludgeIWA Publishing

This CD-ROM presents the best available technologies needed to treat many kinds of industrial wastewaters. The publication shows how physical, chemical, and biological technologies are being modified and improved to meet or exceed removal and reduction criteria for pharmaceutical, chemical, textile, automotive, pulp, paper and other wastes. Advanced Biological Treatment Processes for Industrial Wastewaters provides unique information relative to both the principles and applications of biological wastewater treatment systems for industrial effluents. Case studies document the application of biological wastewater treatment systems in different industrial sectors such as chemical, petrochemical, food-processing, mining, textile and fermentation. With more than 70 tables, 100 figures, 200 equations and several illustrations, the book provides a broad and deep understanding of the main aspects to consider during the design and operation of industrial wastewater treatment plants. Students, researchers and practitioners dealing with the design and application of biological systems for industrial wastewater treatment will find this book invaluable. Biological treatment of wastewater is a low-cost solution for remediation of wastewater. This book focuses on the bioremediation of wastewater, its management, monitoring, role of biofilms on wastewater treatment and energy recovery. It emphasizes on organic, inorganic and micropollutants entering into the environment after conventional wastewater treatment facilities of industrial, agricultural and domestic wastewaters. The occurrence of persistent pollutants poses deleterious effects on human and environmental health. Simple solution for recovery of energy as well as water during biological treatment of wastewater is a viable option. This book provides necessary knowledge and experimental studies on emerging bioremediation processes for reducing water, air and soil pollution. In the past, industrial wastewater treatment primarily focused on the removal of BOD and suspended solids. In recent years, however, the focus has changed to aquatic toxicity, priority pollutants, and volatile organics. This required changes in how we design and operate biological treatment plants. Many existing plants must be retrofitted. New approaches to meet
new requirements are discussed in detail. The authors, with a combined experience of sixty years, have presented case studies for a wide variety of industrial wastewaters including pulp and paper, food processing, chemical and pharmaceuticals, and textile wastewaters. Data interpretation and process design are developed through the use of seventeen examples. Procedures for the laboratory and pilot plant generation of process design data are presented. Emphasis is placed on meeting the many new regulations governing industrial wastewater discharges.

Industrial Wastewater Treatment by Activated Sludge

Organic pollutants cause several environmental problems if discharged to air or water body. The occurrence of organic pollutants in the ecosystem, their risk and removal methods are very important issues. This book deals with several aspects of organic pollutants, especially in the light of organic pollutants monitoring, risk assessment as well as the practical application of different techniques for removing it from the environment. The book is divided into three sections contains 9 chapters. The first section explains monitoring of organic pollutants in soil and water. The second section discusse its risk to human, soil and plants. The third section focus on the different treatment process for the removal of organic pollutants. Industries use a large number of substances in their manufacturing processes and also generate solid residues, liquid effluents and gaseous emissions as wastes. These may be organic, inorganic, inert or toxic compounds but are hazardous in nature and thus need to be treated and disposed off suitably in order to maintain ecological balance of the environment.

Also, wherever feasible, recovery of useful by-products, recycling of water and reuse of wastewater (with or without treatment) save resources and reduce production cost. In view of the above, the book has been written, and now updated in the second edition to discuss sources, characteristics and treatment of wastewater produced in industries such as textiles, dairy, tanneries, pulp and paper, fertilizer, pesticide, organic and inorganic chemicals, engineering and fermentation. Many flow diagrams have been included to illustrate industrial processes and to indicate the sources of wastewater. After describing treatment for individual factories, the author discusses the more advanced and economical common effluent plants.

The text uses simple and straightforward language and makes the presentation attractive. This book should prove extremely useful to undergraduate students of civil and chemical engineering and postgraduate students of environmental science and engineering. Industrial design consultants will also find the book very handy. To the Greens, it may offer some of the solutions to their concerns. NEW TO THE SECOND EDITION • Includes the concept of Zero Liquid Discharge (ZLD) in Chapter 1 and provides further information in Appendix A. • Incorporates brief information about plasma gasification technique in Appendix B and advanced oxidation technique in Chapter 3. • Includes ecological aspects of pollution control and a reference on benthal load in Chapter 4. • Provides information on jute retting in Chapter 6. • Incorporates topics such as photocatalytic degradation of phenols from coke oven wastes, HCl recovery from pickling operations and e-waste handling and disposal in Chapter 13.

Industrial Water Treatment Process Technology begins with a brief overview of the challenges in water resource management, covering issues of plenty and scarcity-spatial variation, as well as water quality standards. In this book, the author includes a clear and rigorous exposition of the various water resource management approaches such as: separation and purification (end of discharge pipe), zero discharge approach (green process development), flow management approach, and preservation and control approach. This coverage is followed by deeper discussion of individual technologies and their applications. Covers water treatment approaches including: separation and purification—end of discharge pipe; zero discharge approach; flow management approach; and preservation and control approach Discusses water treatment process selection, trouble shooting, design, operation, and physico-chemical and treatment Discusses industry-specific water treatment processes.