Advanced Materials High Entropy Alloys VI

These papers present advancements in all aspects of high temperature electrochemistry, from the fundamental to the empirical and from the theoretical to the applied. Topics involving the application of electrochemistry to the nuclear fuel cycle, chemical sensors, energy storage, materials synthesis, refractory metals and their alloys, and alkali and alkaline earth metals are included. Also included are papers that discuss various technical, economic, and environmental issues associated with plant operations and industrial practices.

Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborate tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.

Materials Under Extreme Conditions: Recent Trends and Future Prospects analyzes the chemical transformation and decomposition of materials exposed to extreme conditions, such as high temperature, high pressure, hostile chemical environments, high radiation fields, high vacuum, high magnetic and electric fields, wear and abrasion related to chemical bonding, special crystallographic features, and microstructures. The materials covered in this work encompass oxides, non-oxides, alloys and intermetallics, glasses, and carbon-based materials. The book is written for researchers in academia and industry, and technologists in chemical engineering, materials chemistry, chemistry, and condensed matter physics. Describes and analyzes the chemical transformation and decomposition of a wide range of materials exposed to extreme conditions Brings together information currently scattered across the Internet or incoherently dispersed amongst journals and proceedings Presents chapters on phenomena, materials synthesis, and processing, characterization and properties, and applications Written by established researchers in the field

Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. Discusses the science behind the properties and performance of advanced metallic materials Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work

Joining Processes for Dissimilar and Advanced Materials describes how to overcome the many challenges involved in the joining of similar and dissimilar materials resulting from factors including different thermal coefficients and melting points. Traditional joining processes are ineffective with many newly developed materials. The ever-increasing industrial demands for production efficiency and high-performance materials are also pushing this technology forward. The resulting emergence of advanced micro- and nanoscale material joining technologies, have provided many solutions to these challenges. Drawing on the latest research, this book describes primary and secondary processes for the joining of advanced materials such as metals and alloys, intermetallics, ceramics, glasses, polymers, superalloys, electronic materials and composites in similar and dissimilar combinations. It also covers details of joint design, quality assurance, economics and service life of the product. Provides valuable information on innovative joining technologies including induction heating of metals, ultrasonic heating, and laser heating at micro- and nanoscale levels Describes the newly developed modelling, simulation and digitalization of the joining process Includes a methodology for characterization of joints

This useful collection presents fascinating reviews, and reports of recent investigations, related to advanced metallic, ceramic and composite structural materials. The topics covered include innovative processing techniques, phase transformations, mechanical properties and explorations of the relationship between processing methods, microstructure and mechanical behavior. This book provides an overview of high entropy alloys, explaining all the basics of this new class of materials that emerged at the beginning of the 21st: It begins with the basics of the manufacturing methods of high entropy alloys and discusses the mechanical properties and deformation mechanisms of high entropy alloys. Then the book addresses the stability of these alloys and explores the prospects of high entropy alloys for applications. This book is intended as an introduction for physicists and materials scientists who need to become familiar with high entropy alloys.

Heterostructured (HS) materials represent an emerging class of materials that are expected to become a major research field for the communities of materials, mechanics, and physics in the next couple of decades. One of the biggest advantages of HS materials is that they can be produced by large-scale industrial facilities and technologies and therefore can be commercialized without the scaling up and high-cost barriers that are often encountered by other advanced materials. This book collects recent papers on the progress in the field of HS materials, especially their fundamental physics. The papers are arranged in a sequence of chapters that will help new researchers entering the field to have a quick and comprehensive understanding of HS materials,
including the fundamentals and recent progress in their processing, characterization, and properties.

Mechanical Alloying: Energy Storage, Protective Coatings, and Medical Applications, Third Edition is a detailed introduction to mechanical alloying that offers guidelines on the necessary equipment and facilities needed to carry out the process, also giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter is included on utilization of the mechanically alloyed powders for thermal spraying. Fully updated to cover recent developments in the field, this second edition also introduces new and emerging applications for mechanical alloying, including the fabrication of carbon nanotubes, surface protective coating and hydrogen storage technology. El-Eskandarany discusses the latest research into these applications and provides engineers and scientists with the information they need to implement these developments. Guides readers through each step of the mechanical alloying process. Includes tables and graphs that are used to explain the stages of the milling processes. Presents a comprehensive update on the previous edition, including new chapters that cover emerging applications.

There are relatively few revolutions in the venerable and rather staid field of metallurgy. One can count among them the advent of metallic glasses, of superplastic metals, or of memory-alloys. The latest revolution involves the relatively staid topic of alloy formulation, but is all the more startling because the resultant materials break every long-cherished rule of alloy design. In particular, the famous empirical rules of Hume-Rothery are completely ignored. That is, in the archetypal high-entropy alloy, five metals are alloyed together in equal proportions regardless of atomic-size difference, valence or crystal structure. Commonsense would tell any experienced metallurgist that that could result only in a uselessly brittle mass of intermetallic compounds. But in a truly paradigm-shifting manner, Professor J.W. Yeh of Taiwan correctly predicted that a high configurational entropy could suppress the appearance of detrimental intermetallic compounds and lead to simple familiar microstructures having very useful properties. High-Entropy Alloys can exhibit, for instance, astounding hardness and strength and also have a very good corrosion resistance. The present book summarises the microstructures and properties of all of the high-entropy alloys.

Deformation Based Processing of Materials: Behavior, Performance, Modeling and Control focuses on deformation based process behaviors and process performance in terms of the quality of the needed shape, geometries, and the requested properties of the deformed products. In addition, modelling and simulation is covered to create an in-depth and epistemological understanding of the process. Other topics discussed include ways to efficiently reduce or avoid defects and effectively improve the quality of deformed parts. The book is ideal as a technical document, but also serves as scientific literature for engineers, scientists, academics, research students and management professionals involved in deformation based materials processing. Covers process behaviors, such as non-uniform deformation, unstable deformation, material flow phenomena, and process performance. Includes modelling and simulation of the entire deformation process. Looks at control of the preferred deformation, undesirable material flow, avoidance and reduction of defects, and improving the dimensional accuracy, surface quality and microstructure construction of the produced products.

This collection commemorates the occasion of the honorary symposium that celebrated the 75th birthday and lifelong contributions of Professor K.L. Murty. The topics cover the present status and recent advances in research areas in which he made seminal contributions. The volume includes articles on a variety of topics such as high-temperature deformation behaviors of materials (elevated temperature creep, tensile, fatigue, superplasticity) and their micromechanistic interpretation, understanding mechanical behavior of HCP metals/alloys using crystallographic texture, radiation effects on deformation and creep of materials, mechanical behavior of nanostructured materials, fracture and fracture mechanisms, development and application of small-volume mechanical testing techniques, and general structure-property correlations.

Nothing provided.

This special issue in Modern Physics Letters B covers the latest research in advanced materials such as design, synthesis and development of new materials, processing technology for new materials, and modeling and simulation of materials processing.

This book provides a complete review of the current state of the art in the field of high entropy alloys (HEA). The conventional approach to alloy design is to select one principal element and add elements to it in minor quantities in order to improve the properties. In 2004, Professor J.W. Yeh and his group first reported a new approach to alloy design, which involved mixing elements in equiatomic or near-equatomic proportions, to form multi-component alloys with no single principal element. These alloys are expected to have high configurational entropy and hence were termed as "high entropy alloys." HEAs have a broad range of structures and properties, and may find applications in structural, electrical, magnetic, high-temperature, wear-resistant, corrosion-resistant, and oxidation-resistant components. Due to their unique properties, high entropy alloys have attracted considerable attention from both academics and technologists. This book presents the fundamental knowledge present in the field, the spectrum of various alloy systems and their characteristics studied to date, current key focus areas, and the future scope of the field in terms of research and technological applications. Encompasses the synthesis and phase formation of high entropy alloys. Covers design of HEAs based on thermodynamic criteria. Discusses the structural and functional properties of HEAs. Provides a comparison of HEAs with other multicomponent systems like intermetallics and bulk metallic glasses.

This book provides a cohesive overview of innovations, advances in processing and characterization, and applications for high entropy alloys (HEAs) in performance-critical and non-performance-critical sectors. It covers manufacturing and processing, advanced characterization and analysis techniques, and evaluation of mechanical and physical properties. With chapters authored by a team of internationally renowned experts, the volume includes discussions on high entropy...
thermoelectric materials, corrosion and thermal behavior of HEAs, improving fracture resistance, fatigue properties and high tensile strength of HEAs, HEA films, and more. This work will be of interest to academics, scientists, engineers, technologists, and entrepreneurs working in the field of materials and metals development for advanced applications. Features Addresses a broad spectrum of HEAs and related aspects, including manufacturing, processing, characterization, and properties Emphasizes the application of HEAs Aimed at researchers, engineers, and scientists working to develop materials for advanced applications T.S. Srivatsan, PhD, Professor of Materials Science and Engineering in the Department of Mechanical Engineering at the University of Akron (Ohio, USA), earned his MS in Aerospace Engineering in 1981 and his PhD in Mechanical Engineering in 1984 from the Georgia Institute of Technology (USA). He has authored or edited 65 books, delivered over 200 technical presentations, and authored or co-authored more than 700 archival publications in journals, book chapters, book reviews, proceedings of conferences, and technical reports. His RG score is 45 with a h-index of 53 and Google Scholar citations of 9000, ranking him to be among the top 2% of researchers in the world. He is a Fellow of (i) the American Society for Materials International, (ii) the American Society of Mechanical Engineers, and (iii) the American Association for Advancement of Science. Manoj Gupta, PhD, is Associate Professor of Materials at NUS, Singapore. He is a former Head of Materials Division of the Mechanical Engineering Department and Director Designate of Materials Science and Engineering Initiative at NUS, Singapore. In August 2017, he was highlighted among the Top 1% Scientists of the World by the Universal Scientific Education and Research Network and in the Top 2.5% among scientists as per ResearchGate. In 2018, he was announced as World Academy Championship Winner in the area of Biomedical Sciences by the International Agency for Standards and Ratings. A multiple award winner, he actively collaborates/visits as an invited researcher and visiting and chair professor in Japan, France, Saudi Arabia, Qatar, China, the United States, and India. This book provides a systematic and comprehensive description of high-entropy alloys (HEAs). The authors summarize key properties of HEAs from the perspective of both fundamental understanding and applications, which are supported by in-depth analyses. The book also contains computational modeling in tackling HEAs, which help elucidate the formation mechanisms and properties of HEAs from various length and time scales. The 461 peer-reviewed papers presented in this volume are grouped into 14 chapters: Non-Ferrous Metallic Materials, Iron and Steel, Composites, Micro/Nano-Materials, Ceramics, Optical/Electronic/Magnetic Materials, New Functional Materials, Environmentally Friendly Materials, New Energy Materials, Biomaterials, Materials Forming and Machining, Physics and Numerical Simulation of Material Processes, Surface Engineering/Coatings, and Mechanical Behavior and Fracture. The voluminous contents function as a handbook guide to these topics. Volume is indexed by Thomson Reuters CPCI-S (WoS). Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production. This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry. Collection of selected, peer reviewed papers from the 2013 International Conference on Material Science and Engineering (ICMSE2013), October 4-6, 2013, Guilin, Guangxi, China. Chapter 1: Metal Materials; Chapter 2: Electronic and Magnetic Materials; Chapter 3: Optical Materials; Chapter 4: Structural Materials; Chapter 5: Biomaterials and Healthcare; Chapter 6: Energy and Environment Materials; Chapter 7: Nano-Scale and Amorphous Materials; Chapter 8: Functional Materials; Chapter 9: Technologies, Engineering and Processing Materials. High-Entropy Alloys, Second Edition provides a complete review of the current state of the field of high entropy alloys (HEA). Building upon the first edition, this fully updated release includes new theoretical understandings of these materials, highlighting recent developments on modeling and new classes of HEAs, such as Eutectic HEAs and Dual phase HEAs. Due to their unique properties, high entropy alloys have attracted considerable attention from both academics and technologists. This book presents the fundamental knowledge, the spectrum of various alloy systems and their characteristics, key focus areas, and the future scope of the field in terms of research and technological applications. Provides an up-to-date, comprehensive understanding on the current status of HEAs in terms of theoretical understanding and modeling efforts Gives a complete idea on alloy design criteria of various classes of HEAs developed so far Discusses the microstructure property correlations in HEAs in terms of structural and functional properties Presents a comparison of HEAs with other multicomponent systems, like intermetallics and bulk metallic glasses.
This proceedings volume gathers selected papers presented at the Chinese Materials Conference 2017 (CMC2017), held in Yinchuan City, Ningxia, China, on July 06-12, 2017. This book covers a wide range of metamaterials and multifunctional composites, multiferroic materials, amorphous and high-entropy alloys, advanced glass materials and devices, advanced optoelectronic and microelectronic materials, biomaterials, deformation behavior and flow units in metastable materials, advanced fibers and nano-composites, polymer materials, and nanoporous metal materials. The Chinese Materials Conference (CMC) is the most important serial conference of the Chinese Materials Research Society (C-MRS) and has been held each year since the early 1990s. The 2017 installment included 37 Symposia covering four fields: Advances in energy and environmental materials; High performance structural materials; Fundamental research on materials; and Advanced functional materials. More than 5500 participants attended the congress, and the organizers received more than 700 technical papers. Based on the recommendations of symposium organizers and after peer reviewing, 490 papers have been included in the present proceedings, which showcase the latest original research results in the field of materials, achieved by more than 500 research groups at various universities and research institutes.

This book draws on the latest research to discuss the history and development of high-entropy alloys and ceramics in bulk, film, and fiber form. High-entropy materials have recently been developed using the entropy of mixing and entropy of configuration of materials, and have proven to exhibit unique properties superior to those of conventional materials. The field of high-entropy alloys was born in 2004, and has since been developed for both scientific and engineering applications. Although there is extensive literature, this field is rapidly transforming. This book highlights the cutting edge of high-entropy materials, including their fundamentals and applications. Above all, it reflects two major milestones in their development: the equi-atomic ratio single-phase high-entropy alloys; and the non-equi-atomic ratio dual-phase high-entropy alloys.

This is the first comprehensive book to address in-situ mechanics approach, which relies on real-time imaging during mechanical measurements of materials. The book presents tools, techniques and methods to interrogate the deformation characteristics of a wide array of material classes, and how the mechanics and the material microstructures are correlated. In-situ approach provides unprecedented ability to decipher the mechanical behavior of materials from atomic length scales all the way up to bulk-scale, which is not possible using conventional means. The book also addresses how to capture the deformation behavior of materials under different stress-states and extreme environments. The book will be useful to the new generation of students, scientists and researchers working on the frontiers of material design and innovation as they aim to develop new materials with predictable mechanical properties and technological applications. This book can also serve as a textbook aimed at upper-level undergraduates and graduate-level students who are beginning to delve into the mechanics of materials. Catering to a generation of students that appreciates videos as a didactic tool, this book contains numerous videos to supplement problems, solutions, and case studies.

Manufacturing Techniques for Materials: Engineering and Engineered provides a cohesive and comprehensive overview of the following: (i) prevailing and emerging trends, (ii) emerging developments and related technology, and (iii) potential for the commercialization of techniques specific to manufacturing of materials. The first half of the book provides the interested reader with detailed chapters specific to the manufacturing of emerging materials, such as additive manufacturing, with a valued emphasis on the science, technology, and potentially viable practices specific to the manufacturing technique used. This section also attempts to discuss in a lucid and easily understandable manner the specific advantages and limitations of each technique and goes on to highlight all of the potentially viable and emerging technological applications. The second half of this archival volume focuses on a wide spectrum of conventional techniques currently available and being used in the manufacturing of both materials and resultant products. Manufacturing Techniques for Materials is an invaluable tool for a cross-section of readers including engineers, researchers, technologists, students at both the graduate level and undergraduate level, and even entrepreneurs. Over 170 contributions (invited talks, oral presentations, and posters) were presented by participants from universities, research institutions, and industry, which offered interdisciplinary discussions indicating strong scientific and technological interest in the field of nanostructured systems. This issue contains 23 peer-reviewed papers that cover various aspects and the latest developments related to nanoscaled materials and functional ceramics.

“This book entitled “Engineering Steels and High Entropy-Alloys” presents an overview of various types of advanced steels and high entropy alloys. It also discusses the current research trends, problems, and applications of engineering steels and high entropy materials. The book also gives a brief overview of advances in surface protection strategies of steels and laser processing of materials (additive manufacturing). The various key features of this book include: 1. A comprehensive overview of various types of engineering steels, phase transformation, and applications in engineering. 2. A complete detailed understanding and mechanism of high entropy materials, including high entropy alloys and ceramics. 3. Descriptions of structure-property relationships in high entropy materials and their application in various fields such as biomedical implants. 4. A brief review of various laser processing (additive manufacturing) and surface protection of advanced materials.”

HEA : High-Entropy Alloys (also known as CCA or MPEA) - are equiatomic and nonequiatomic multicomponent alloys. The configurational entropy of these alloys is expected to be very high at their random solution states. Such a high entropy is expected to drive the tendency to form simple solid solutions (crystalline or amorphous) rather than complex microstructures with many compounds. These alloys do form simple solid solutions in most of the cases and the number
of phases observed in these alloys is much less than the maximum predicted from the Gibbs phase rule. The researchers also feel that HEAs can substitute conventional materials in advanced applications so that the limitations of the latter in service life and operational conditions could be overcome by providing superior performance of the former. A number of processing routes, including conventional melting and casting, mechanical alloying, various coating techniques, and even combinatorial materials science approaches are being used to synthesize and process this new class of alloys. There have been a lot of studies on understanding both the structural and functional properties of these alloys. The results of HEAs and HEA-related materials reported so far by various research groups are very encouraging for their applications in a wide range of fields such as materials for engine, nuclear plant, chemical plant, marine structure, tool, mold, hard facing, and functional coatings. This book presents a comprehensive insight into all the above aspects of this exciting new class of alloys.

High-entropy alloys (HEAs) are a new class of materials attracting attention from researchers all over the world. This book provides a comprehensive overview of the research on HEAs, as well as discusses the mechanical, physical, and chemical properties of new HEAs and their potential applications. Chapters cover such topics as HEA superconductors, HEA composites, high-entropy superalloys, artificial intelligence in HEA design, and more.

In recent years, people have tended to adjust the degree of order/disorder to explore new materials. The degree of order/disorder can be measured by entropy, and it can be divided into two parts: topological disordering and chemical disordering. The former mainly refers to order in the spatial configuration, e.g., amorphous alloys which show short-range ordering but without long-range ordering, while the latter mainly refers to the order in the chemical occupancy, that is to say, the components can replace each other, and typical representatives are high-entropy alloy (HEAs). HEAs, in sharp contrast to traditional alloys based on one or two principal elements, have one striking characteristic: their unusually high entropy of mixing. They have not received much noticed until the review paper entitled “Microstructure and Properties of High-Entropy Alloys” was published in 2014 in the journal of Progress in Materials Science. Numerous reports have shown they exhibit five recognized performance characteristics, namely, strength–plasticity trade-off breaking, irradiation tolerance, corrosion resistance, high-impact toughness within a wider temperature range, and high thermal stability. So far, the development of HEAs has gone through three main stages: 1. Quinary equal-atomic single-phase solid solution alloys; 2. Quaternary or quinary non-equal-atomic multiphase alloys; 3. Medium-entropy alloys, high-entropy fibers, high-entropy films, lightweight HEAs, etc. Nowadays, more in-depth research on high-entropy alloys is urgently needed.

Hard or protective coatings are widely used in conventional and modern industries and will continue to play a key role in future manufacturing, especially in the micro and nano areas. Protective Thin Coatings Technology highlights the developments and advances in the preparation, characterization, and applications of protective micro-/nanoscaled films and coatings. This book Covers technologies for sputtering of flexible hard nanocoatings, deposition of solid lubricating films, and multilayer transition metal nitrides Describes integrated nanomechanical characterization of hard coatings, corrosion and tribo-corrosion of hard coatings, and high entropy alloy films and coatings Investigates thin films and coatings for high-temperature applications, nanocomposite coatings on magnesium alloys, and the correlation between coating properties and industrial applications Features various aspects of hard coatings, covering advanced sputtering technologies, structural characterizations, and simulations, as well as applications This first volume in the two-volume set, Protective Thin Coatings and Functional Thin Films Technology, will benefit industry professionals and researchers working in areas related to semiconductors, optoelectronics, plasma technology, solid-state energy storages, and 5G, as well as advanced students studying electrical, mechanical, chemical, and material engineering.

Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.

Microscopy is a field of material science and engineering that studies the chemical and physical behavior of metallic elements, intermetallic compounds, and their mixtures, which are called alloys. These metals are widely used in this kind of engineering because they have unique combinations of mechanical properties (strength, toughness, and ductility) as well as special physical characteristics (thermal and electrical conductivity), which cannot be achieved with other materials. In addition to thousands of traditional alloys, many exciting new materials are under development for modern engineering applications. Metallurgical engineering is an area concerned with extracting minerals from raw materials and developing, producing, and using mineral materials. It is based on the principles of science and engineering, and can be divided into mining processes, which are concerned with the extraction of metals from their ores to make refined alloys, and physical metallurgy, which includes the fabrication, alloying, heat treatment, joining and welding, corrosion protection, and different testing methods of metals. Conventional metal forming/shaping techniques include casting and forging, which remains an important processing route. Electrodeposition is one of the most used methods for metal and metallic alloy film preparation in many technological processes. Alloy metal coatings offer a wider range of properties than those obtained by a single metal film and can be applied to improve the properties of the substrate/coating system. This book covers a wide range of topics related to recent advancements in metallurgical engineering and electrodeposition such as metallurgy forming, structure, microstructure properties, testing and characterizations, and electrodeposition techniques. It also highlights the progress of metallurgical engineering, the ferrous and non-ferrous materials industries, and the electrodeposition of nanomaterials and composites.