A Gosavi Simulation Based Optimization Springer

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.

This book is intended as a text covering the central concepts and techniques of Competitive Markov Decision Processes. It is an attempt to present a rigorous treatment that combines two significant research topics: Stochastic Games and Markov Decision Processes, which have been studied extensively, and at times quite independently, by mathematicians, operations researchers, engineers, and economists. Since Markov decision processes can be viewed as a special noncompetitive case of stochastic games, we introduce the new terminology Competitive Markov Decision Processes that emphasizes the importance of the link between these two
topics and of the properties of the underlying Markov processes. The book is designed to be used either in a classroom or for self-study by a mathematically mature reader. In the Introduction (Chapter 1) we outline a number of advanced undergraduate and graduate courses for which this book could usefully serve as a text. A characteristic feature of competitive Markov decision processes - and one that inspired our long-standing interest - is that they can serve as an "orchestra" containing the "instruments" of much of modern applied (and at times even pure) mathematics. They constitute a topic where the instruments of linear algebra, applied probability, mathematical programming, analysis, and even algebraic geometry can be "played" sometimes solo and sometimes in harmony to produce either beautifully simple or equally beautiful, but baroque, melodies, that is, theorems.

Over the past several years, cooperative control and optimization have increasingly played a larger and more important role in many aspects of military sciences, biology, communications, robotics, and decision making. At the same time, cooperative systems are notoriously difficult to model, analyze, and solve. While intuitively understood, they are not axiomatically defined in any commonly accepted manner. The works in this volume provide outstanding insights into this very complex area of research. They are the result of invited papers and selected presentations at the Fourth Annual Conference on Cooperative Control and Optimization held in Destin, Florida, November 2003. This book has been selected for coverage in: OCo Index to Scientific & Technical Proceedings- (ISTP- / ISI Proceedings). OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences. Contents: Mesh Stability in Formation of Distributed Systems (C Ashokkumar et al.); On the Performance of Heuristics for
Broadcast Scheduling (C Commander et al.); Coupled Detection Rates: An Introduction (D Jeffcoat); Decentralized Receding Horizon Control for Multiple UAVs (Y Kuwata & J How); Multitarget Sensor Management of Dispersed Mobile Sensors (R Mahler); K-Means Clustering Using Entropy Minimization (A Okafor & P Pardalos); Possibility Reasoning and the Cooperative Prisoner’s Dilemma (H Pfister & J Walls); Coordinating Very Large Groups of Wide Area Search Munitions (P Scerri et al.); A Vehicle Following Methodology for UAV Formations (S Spry et al.); Decentralized Optimization via Nash Bargaining (S Waslander et al.); and other papers. Readership: Graduate students and researchers in optimization and control, computer science and engineering."

This book combines wireless telematics systems with dynamic vehicle routing algorithms and vehicle-positioning systems to produce a telematics-enabled information system that can be employed by commercial fleet operators for real-time monitoring, control, and planning. The book further presents a Messaging And Fleet Monitoring System and a Dynamic Planning System (DPS) that provides real-time decision support considering the current state of the transportation system.

This book constitutes the refereed proceedings of the 8th International Conference on Computational Logistics, ICCL 2017, held in Southampton, UK, in October 2017. The 38 papers presented in this volume were carefully reviewed and selected for inclusion in the book. They are organized in topical sections entitled: vehicle routing and scheduling; maritime logistics; synchromodal transportation; and transportation, logistics and supply chain planning. Computer Science and Operations Research continue to have a synergistic relationship and this book represents the results of the cross-fertilization between OR/MS and CS/AI. It is this
interface of OR/CS that makes possible advances that could not have been achieved in isolation. Taken collectively, these articles are indicative of the state of the art in the interface between OR/MS and CS/AI and of the high-caliber research being conducted by members of the INFORMS Computing Society.

Presenting techniques, case-studies and methodologies that combine the use of simulation approaches with optimization techniques for facing problems in manufacturing, logistics, or aeronautical problems, this book provides solutions to common industrial problems in several fields, which range from manufacturing to aviation problems, where the common denominator is the combination of simulation’s flexibility with optimization techniques’ robustness.

Providing readers with a comprehensive guide to tackle similar issues in industrial environments, this text explores novel ways to face industrial problems through hybrid approaches (simulation-optimization) that benefit from the advantages of both paradigms, in order to give solutions to important problems in service industry, production processes, or supply chains, such as scheduling, routing problems and resource allocations, among others. Simulation-Based Optimization, Parametric Optimization Techniques and Reinforcement Learning

Operations Research and Cyber-Infrastructure is the companion volume to the Eleventh INFORMS Computing Society Conference (ICS 2009), held in Charleston, South Carolina, from January 11 to 13, 2009. It includes 24 high-quality refereed research papers. As always, the focus of interest for ICS is the interface between Operations Research and Computer Science, and the papers in this volume reflect that interest. This is naturally an evolving area as computational power increases rapidly while decreasing in cost even more quickly, and the
papers included here illustrate the wide range of topics at this interface. The year 2009 celebrates the bicentenary of Darwin’s birth and the 150th anniversary of the publication of his seminal work, On the Origin of Species. If this makes 2009 a special year for the research community working in biology and evolution, the field of evolutionary computation (EC) also shares the same excitement. EC techniques are efficient, nature-inspired planning and optimization methods based on the principles of natural evolution and genetics. Due to their efficiency and simple underlying principles, these methods can be used in the context of problem solving, optimization, and machine learning. A large and ever-increasing number of researchers and professionals make use of EC techniques in various application domains. This volume presents a careful selection of relevant EC applications combined with a thorough examination of the techniques used in EC. The papers in the volume illustrate the current state of the art in the application of EC and can help and inspire researchers and professionals to develop efficient EC methods for design and problem solving.

Simulation Using ProModel covers the art and science of simulation in general and the use of ProModel simulation software in particular. The text blends theory with practice. Actual applications in business, services and manufacturing and a hands-on approach to simulation, including real-world simulation projects, are emphasized. The third edition of Simulation Using ProModel reflects the most recent version of the ProModel software in all the examples and labs as well as expanded coverage on generating random variates and design of experiments. Additionally, the lead author is founder and Chief Technology Advisor for ProModel Corporation.

In this book, the major ideas behind Organic Computing are delineated, together with a sparse
sample of computational projects undertaken in this new field. Biological metaphors include evolution, neural networks, gene-regulatory networks, networks of brain modules, hormone system, insect swarms, and ant colonies. Applications are as diverse as system design, optimization, artificial growth, task allocation, clustering, routing, face recognition, and sign language understanding.

Reactive Search and Intelligent Optimization is an excellent introduction to the main principles of reactive search, as well as an attempt to develop some fresh intuition for the approaches. The book looks at different optimization possibilities with an emphasis on opportunities for learning and self-tuning strategies. While focusing more on methods than on problems, problems are introduced wherever they help make the discussion more concrete, or when a specific problem has been widely studied by reactive search and intelligent optimization heuristics. Individual chapters cover reacting on the neighborhood; reacting on the annealing schedule; reactive prohibitions; model-based search; reacting on the objective function; relationships between reactive search and reinforcement learning; and much more. Each chapter is structured to show basic issues and algorithms; the parameters critical for the success of the different methods discussed; and opportunities for the automated tuning of these parameters.

Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. This book brings the state-of-the-art research together for the first time. It provides practical modeling methods for many real-world problems with high dimensionality or complexity which have not hitherto been treatable with Markov decision processes.
The primary objective of this essential text is to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties. It does so at the same time as demonstrating the modeling and problem-solving flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures which either extend usual algebra or form a new branch of it.

A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications. More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized
The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

This volume presents a wide range of medical applications that can utilize mathematical computing. This work grew out of a workshop on optimization which was held during the 2005 CIM Thematic Term on Optimization in Coimbra, Portugal. It provides an overview of the state-of-the-art in optimization in medicine and will serve as an excellent reference for researchers in the medical computing community and for those working in applied mathematics and optimization.

This book focuses on real time management of distribution systems, integrating the latest results in system design, algorithm development and system implementation to capture the state-of-the-art research and application trends. The book important topics such as goods dispatching, couriers, rescue and repair services, taxi cab services, and more. The book includes real-life case studies that describe the solution to actual distribution problems by combining systemic and algorithmic approaches.
Tabu Search (TS) and, more recently, Scatter Search (SS) have proved highly effective in solving a wide range of optimization problems, and have had a variety of applications in industry, science, and government. The goal of Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter Search is to report original research on algorithms and applications of tabu search, scatter search or both, as well as variations and extensions having "adaptive memory programming" as a primary focus. Individual chapters identify useful new implementations or new ways to integrate and apply the principles of TS and SS, or that prove new theoretical results, or describe the successful application of these methods to real world problems.

Schedule-Based Dynamic Transit Modeling: Theory and Applications outlines the new schedule-based dynamic approach to mass transit modeling. In the last ten years the schedule-based dynamic approach has been developed and applied especially for operational planning. It allows time evolution of on-board loads and travel times for each run of each line to be obtained, and uses behavioral hypotheses strictly related to transit systems and user characteristics. It allows us to open new frontiers in transit modelling to support network design, timetable setting, investigation of congestion effects, as well as the assessment of new technologies introduction, such as information to users (ITS technologies). The contributors and editors of the book are leading researchers in the field of transportation, and in this volume they build a solid foundation for developing still more sophisticated models. These future models of mass transit systems will continue to add higher levels of accuracy and sensitivity desired in forecasting the performance of public transport systems.

Throughout the past few years, there has been extensive research done on structural design in
terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.

"Schedule-Based Modeling of Transportation Networks: Theory and Applications" follows the book Schedule-Based Dynamic Transit Modeling, published in this series in 2004, recognizing the critical role that schedules play in transportation systems. Conceived for the simulation of transit systems, in the last few years the schedule-based approach has been expanded and applied to operational planning of other transportation schedule services besides mass transit, e.g. freight transport. This innovative approach allows forecasting the evolution over time of the on-board loads on the services and their time-varying performance, using credible user
behavioral hypotheses. It opens new frontiers in transportation modeling to support network
design, timetable setting, and investigation of congestion effects, as well as the assessment of
such new technologies, such as users system information (ITS technologies).

Metaheuristics: Progress as Real Problem Solvers is a peer-reviewed volume of eighteen
current, cutting-edge papers by leading researchers in the field. Included are an invited paper
by F. Glover and G. Kochenberger, which discusses the concept of Metaheuristic agent
processes, and a tutorial paper by M.G.C. Resende and C.C. Ribeiro discussing GRASP with
path-relinking. Other papers discuss problem-solving approaches to timetabling, automated
planograms, elevators, space allocation, shift design, cutting stock, flexible shop scheduling,
colorectal cancer and cartography. A final group of methodology papers clarify various aspects
of Metaheuristics from the computational view point.

The book compiles the research works related to smart solutions concept in context to smart
energy systems, maintaining electrical grid discipline and resiliency, computational collective
intelligence consisted of interaction between smart devices, smart environments and smart
interactions, as well as information technology support for such areas. It includes high-quality
papers presented in the International Conference on Intelligent Computing Techniques for
Smart Energy Systems organized by Manipal University Jaipur. This book will motivate
scholars to work in these areas. The book also prophesies their approach to be used for the
business and the humanitarian technology development as research proposal to various
government organizations for funding approval.

This book considers large and challenging multistage decision problems, which
can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic
Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From
model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.

This edited volume includes all papers presented at the 22nd International Conference on Mine Planning and Equipment Selection (MPES), Dresden, Germany, 2013. Mineral Resources are needed for almost all processes of modern life, whilst the mining industry is facing strict requirements regarding efficiency and sustainability. The research papers in this volume deal with the latest developments and research results in the fields of mining, machinery, automatization and environment protection.

The European Symposium on Computer Aided Process Engineering (ESCAPE)
Online Library A Gosavi Simulation Based Optimization Springer

series presents the latest innovations and achievements of leading professionals from the industrial and academic communities. The ESCAPE series serves as a forum for engineers, scientists, researchers, managers and students to present and discuss progress being made in the area of Computer Aided Process Engineering (CAPE). European industries large and small are bringing innovations into our lives, whether in the form of new technologies to address environmental problems, new products to make our homes more comfortable and energy efficient or new therapies to improve the health and well-being of European citizens. Moreover, the European Industry needs to undertake research and technological initiatives in response to humanity's "Grand Challenges", described in the declaration of Lund, namely, Global Warming, Tightening Supplies of Energy, Water and Food, Ageing Societies, Public Health, Pandemics and Security. Thus, the Technical Theme of ESCAPE 21 will be "Process Systems Approaches for Addressing Grand Challenges in Energy, Environment, Health, Bioprocessing & Nanotechnologies".

The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such
topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes. This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.

The third volume of the Wiley series, Environmentally Conscious Material and Chemically Processing focuses on environmentally preferable approaches to designing and developing material and chemical processing. The book reflects the hierarchy of design, from tools for evaluating environmental hazards of industrial materials and chemicals through to the economics of environmental improvement projects. Major topics covered include: Chemical Manufacturing, Materials substitutions, Engineering processes, products, and systems to reduce environmental impacts, approaches for evaluating emissions and hazards of
chemicals and processes, Environmental regulations, Properties and fates of environmental contaminants, and others.
This book constitutes the refereed proceedings of the 9th International Conference on Computational Logistics, ICCL 2018, held in Vietri sul Mare, Italy, in October 2018. The 32 full papers presented were carefully reviewed and selected from 71 submissions. They are organized in topical sections as follows: maritime shipping and routing, container handling and container terminals, vehicle routing and multi-modal transportation, network design and scheduling, logistics oriented combinatorial optimization.

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics.
(simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

This superb study offers insights into the methods and techniques that enable the implementation of a Collaborative Engineering concept on product design. It does so by integrating capabilities for intelligent information support and group
decision-making, utilizing a common enterprise network model and knowledge interface through shared ontologies. The book is also a collection of the latest applied methods and technology from selected experts in this area.

This book examines the newer and emerging models of telecommunications technology that play instrumental roles in providing international economic and societal interconnectivity. Advancing technology in the field imposes the need to develop new models to solve complex planning and decision making problems. The book explores natural output of the new technical developments and applications with selective chapter treatment on novel business models to fill technical and business needs.

The book Scatter Search by Manuel Laguna and Rafael Martí represents a long-awaited "missing link" in the literature of evolutionary methods. Scatter Search (SS)-together with its generalized form called Path Relinking-constitutes the only evolutionary approach that embraces a collection of principles from Tabu Search (TS), an approach popularly regarded to be divorced from evolutionary procedures. The TS perspective, which is responsible for introducing adaptive memory strategies into the metaheuristic literature (at purposeful level beyond simple inheritance mechanisms), may at first seem to be at odds with population-based approaches. Yet this perspective equips SS with a remarkably effective
foundation for solving a wide range of practical problems. The successes
documented by Scatter Search come not so much from the adoption of adaptive
memory in the range of ways proposed in Tabu Search (except where, as often
happens, SS is advantageously coupled with TS), but from the use of strategic
ideas initially proposed for exploiting adaptive memory, which blend
harmoniously with the structure of Scatter Search. From a historical perspective,
the dedicated use of heuristic strategies both to guide the process of combining
solutions and to enhance the quality of offspring has been heralded as a key
innovation in evolutionary methods, giving rise to what are sometimes called
"hybrid" (or "memetic") evolutionary procedures. The underlying processes have
been introduced into the mainstream of evolutionary methods (such as genetic
algorithms, for example) by a series of gradual steps beginning in the late 1980s.
A unique interdisciplinary foundation for real-world problemsolving Stochastic
search and optimization techniques are used in a vast number of areas, including
aerospace, medicine, transportation, and finance, to name but a few. Whether the
goal is refining the design of a missile or aircraft, determining the effectiveness of
a new drug, developing the most efficient timing strategies for traffic signals, or
making investment decisions in order to increase profits, stochastic algorithms
can help researchers and practitioners devise optimal solutions to countless real-
Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control is a graduate-level introduction to the principles, algorithms, and practical aspects of stochastic optimization, including applications drawn from engineering, statistics, and computer science. The treatment is both rigorous and broadly accessible, distinguishing this text from much of the current literature and providing students, researchers, and practitioners with a strong foundation for the often-daunting task of solving real-world problems. The text covers a broad range of today’s most widely used stochastic algorithms, including: Random search Recursive linear estimation Stochastic approximation Simulated annealing Genetic and evolutionary methods Machine (reinforcement) learning Model selection Simulation-based optimization Markov chain Monte Carlo Optimal experimental design The book includes over 130 examples, Web links to software and data sets, more than 250 exercises for the reader, and an extensive list of references. These features help make the text an invaluable resource for those interested in the theory or practice of stochastic search and optimization.

Simulation Methods for Reliability and Availability of Complex Systems discusses the use of computer simulation-based techniques and algorithms to determine reliability and availability (R and A) levels in complex systems. The book: shares
theoretical or applied models and decision support systems that make use of simulation to estimate and to improve system R and A levels, forecasts emerging technologies and trends in the use of computer simulation for R and A and proposes hybrid approaches to the development of efficient methodologies designed to solve R and A-related problems in real-life systems. Dealing with practical issues, Simulation Methods for Reliability and Availability of Complex Systems is designed to support managers and system engineers in the improvement of R and A, as well as providing a thorough exploration of the techniques and algorithms available for researchers, and for advanced undergraduate and postgraduate students.

The two-volume set IFIP AICT 535 and 536 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2018, held in Seoul, South Korea, in August 2018. The 129 revised full papers presented were carefully reviewed and selected from 149 submissions. They are organized in the following topical sections: lean and green manufacturing; operations management in engineer-to-order manufacturing; product-service systems, customer-driven innovation and value co-creation; collaborative networks; smart production for mass customization; global supply chain management; knowledge based production planning and
control; knowledge based engineering; intelligent diagnostics and maintenance solutions for smart manufacturing; service engineering based on smart manufacturing capabilities; smart city interoperability and cross-platform implementation; manufacturing performance management in smart factories; industry 4.0 - digital twin; industry 4.0 - smart factory; and industry 4.0 - collaborative cyber-physical production and human systems.

Simulation Approaches in Transportation Analysis: Recent Advances and Challenges presents the latest developments in transport simulation, including dynamic network simulation and micro-simulation of people’s movement in an urban area. It offers a collection of the major simulation models that are now in use throughout the world; it illustrates each model in detail, examines potential problems, and points to directions for future development. The reader will be able to understand the functioning, applicability, and usefulness of advanced transport simulation models. The material in this book will be of wide use to graduate students and practitioners as well as researchers in the transportation engineering and planning fields.

Copyright: ce97f3ce0d90af2eb0391764002df444